Global existence and uniqueness of weak solutions of a Stokes-Magneto system with fractional diffusions

نویسندگان

چکیده

We consider a Stokes-Magneto system in Rd (d≥2) with fractional diffusions Λ2αu and Λ2βb for the velocity u magnetic field b, respectively. Here α,β are positive constants Λs=(−Δ)s/2 is Laplacian of order s. establish global existence weak solutions any initial data L2 when α, β satisfy 1/2<α<(d+1)/2, β>0, min⁡{α+β,2α+β−1}>d/2. It also shown that unique if β≥1 min⁡{α+β,2α+β−1}≥d/2+1, addition.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Existence and uniqueness of weak solutions for a class of nonlinear divergence type diffusion equations

‎In this paper‎, ‎we study the Neumann boundary value problem of a class of nonlinear divergence type diffusion equations‎. ‎By a priori estimates‎, ‎difference and variation techniques‎, ‎we establish the existence and uniqueness of weak solutions of this problem.

متن کامل

Existence and uniqueness of solutions for p-laplacian fractional order boundary value problems

In this paper, we study sufficient conditions for existence and uniqueness of solutions of three point boundary vale problem for p-Laplacian fractional order differential equations. We use Schauder's fixed point theorem for existence of solutions and concavity of the operator for uniqueness of solution. We include some examples to show the applicability of our results.

متن کامل

Existence and multiplicity of positive solutions for a coupled system of perturbed nonlinear fractional differential equations

In this paper, we consider a coupled system of nonlinear fractional differential equations (FDEs), such that both equations have a particular perturbed terms. Using emph{Leray-Schauder} fixed point theorem, we investigate the existence and multiplicity of positive solutions for this system.

متن کامل

A novel existence and uniqueness theorem for solutions to FDEs driven by Lius process with weak Lipschitz coefficients

This paper we investigate the existence and uniqueness of solutions to fuzzydierential equations driven by Liu's process. For this, it is necessary to provideand prove a new existence and uniqueness theorem for fuzzy dierential equationsunder weak Lipschitz condition. Then the results allows us to considerand analyze solutions to a wide range of nonlinear fuzzy dierential equationsdriven by Liu...

متن کامل

A Moving-boundary Problem for Concrete Carbonation: Global Existence and Uniqueness of Weak Solutions∗

This paper deals with a one-dimensional coupled system of semi-linear parabolic equations with a kinetic condition on the moving boundary. The latter furnishes the driving force for the moving boundary. The main results are a (global) existenceand uniqueness theorem, and non-trivial lower and upper estimates for the velocity of the moving boundary. The system under consideration is modelled on ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Differential Equations

سال: 2023

ISSN: ['1090-2732', '0022-0396']

DOI: https://doi.org/10.1016/j.jde.2023.07.039